Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Poult Sci ; 102(6): 102661, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-20244886

RESUMO

Avian infectious bronchitis (IB) is a highly contagious disease caused by infectious bronchitis virus (IBV). Vaccination is an effective approach for controlling IBV. Therefore, reliable immune monitoring for IB is critical for poultry. In this study, a novel peptide derived from S2 protein was used to develop an enzyme-linked immunosorbent assay (ELISA) for the detection of broadly cross-reactive antibodies against IBV. The peptide-based ELISA (pELISA) showed good specificity and sensitivity in detecting IBV antibodies against different serotypes. A semilogarithmic regression method for determining IBV antibody titers was also established. Antibody titers detected by pELISA and calculated with this equation were statistically similar to those evaluated by indirect fluorescence assay (IFA). Moreover, the comparison analysis showed a 96.07% compatibility between the pELISA and IDEXX ELISA. All these data demonstrate that the pELISA generated here can be as a rapid and reliable serological surveillance tool for monitoring IBV infection or vaccination.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Anticorpos Antivirais/análise , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Peptídeos , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/prevenção & controle
2.
J Med Virol ; 95(3): e28657, 2023 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2265364

RESUMO

Novel immune escape variants have emerged as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Many of the variants cause breakthrough infections in vaccinated populations, posing great challenges to current antiviral strategies targeting the immunodominance of the receptor-binding domain within the spike protein. Here, we found that a novel broadly neutralizing monoclonal antibody (mAb), G5, provided efficient protection against SARS-CoV-2 variants of concern (VOCs) in vitro and in vivo. A single dose of mAb G5 could significantly inhibit the viral burden in mice challenged with the mouse-adapted SARS-CoV-2 or SARS-CoV-2 Omicron BA.1 variant, as well as the body weight loss and cytokine release induced by mouse-adapted SARS-CoV-2. The refined epitope recognized by mAb G5 was identified as 1148 FKEELDKYF1156 in the stem helix of subunit S2. In addition, a human-mouse chimeric mAb was generated based on the variable region of heavy chain and VL genes of mAb G5. Our study provides a broad antibody drug candidate against SARS-CoV-2 VOCs and reveals a novel target for developing pan-SARS-CoV-2 vaccines.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Vacinas contra COVID-19 , SARS-CoV-2/genética , Imunossupressores , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA